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Compressive holography applies sparsity priors to data acquired by digital

holography to infer a small number of object features or basis vectors from a

slightly larger number of discrete measurements. Compressive holography may

be applied to reconstruct 3D images from 2D measurements or to reconstruct

2D images from sparse apertures. This paper is a tutorial covering practical

compressive holography procedures including field propagation, reference

filtering, and inverse problems in compressive holography. We present as

examples 3D tomography from a 2D hologram, 2D image reconstruction

from a sparse aperture and diffuse object estimation from diverse speckle

realizations. c© 2011 Optical Society of America

OCIS codes: 0900.1995, 100.6950, 110.1758, 110.6150.

♦Datasets associated with this article are available

at http://midas.osa.org/midaspre/item/view/1034. Links such as ”View 1”

that appear in figure captions and elsewhere will launch custom data views if

ISP software is present.

1. Introduction

Digital holography is the capture of coherent fields scattered from objects on electronic pho-

tometric sensors [1]. These holograms may yield information about these objects including

shape, reflectivity, and acoustic or mechanical deflections. Digital processing allows an al-

most unlimited flexibility to process sampled holographic data to discern features. Recently,

the method of compressive sensing [2, 3] has been developed to determine the complex fea-

tures of objects using relatively few measurements. Rather that assume that objects may

contain arbitrary features, most of which are unlikely to occur, compressive sensing imposes

a priori constraints on the object that assume it possesses only a small number of a large

set of predefined features, and the identity of these features is inferred from the data. Many
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objects of interest in holography are of such a type, including three-dimensional objects

which may be largely contiguous and also possess much empty space, and two-dimensional

images which may have large contiguous regions. Compressive holography advantageously

combines compressive sensing with digital holography so that two-dimensional holograms or

sparse aperture holograms may be used to infer object properties that would be otherwise

undetermined.

Applying compressive and feature-specific priors to optical imaging is an area of increas-

ingly intensive study. Numerous designs for feature specific [4] and compressive [5] optical

imagers have been developed over the past decade. Several studies have extended these

approaches to digital holography. Zhang et al. used linear [6] and nonlinear [7] inverse al-

gorithms to reconstruct sections of 3D images. Our group has completed several studies of

compressive holographic tomography [8,9], millimeter wave holography [10] and diffuse holog-

raphy [11]. Denis et al. have also applied sparsity constraints in holographic imaging [12].

Fournier et al. theoretically estimated single point resolution in compressive holographic

tomography [13]. Marim et al. decompressively reconstructed a 2D microscopic image with

fewer measurements [14,15]. Rivenson et al. suggested variable sub-sampling scheme for com-

pressive Fresnel holography [16], and demonstrated compressive measurement for multiple

view projection incoherent holography [17]. Xu et al. adopted the compressive holographic

tomography technique [8] to filter the object signal in inline coherent anti-Stokes Raman

scattering holography [18]. Xu et al. effectively reduced the number of measurements in THz

imaging [19]. In a broader scope, Coskun et al. compressively decoded sparse objects’ dis-

tribution in lensless wide-field fluorescent imaging [20]. Suzen et al. used sparsifying basis to

improve reconstructions with under-sampled data in diffuse optical tomography [21]. Given

that both computational imaging and compressive sensing are rapidly evolving, it is certain

that great advances for these fields are to come.

The common themes of this previous work are first, that image estimation using spar-

sity priors is useful in holography and second, that co-design of nonlinear estimators with

sampling strategies and geometries may yield significant improvements. While these basic

themes may be applied to a very wide diversity of holographic systems, the basic advantage

that they convey are summarized by the idea that compressive measurement delivers more

signal values with fewer measurements. For this advantage to have value, one must assume a

cost or feasibility model that inhibits complete measurement. The simplest such models arise

in 3D estimation from 2D data, in which case complete sampling is not physically possible

in a single time step, and 2D or 3D estimation from sparse apertures, in which case complete

sampling is not economically desirable.

This paper reprises a tutorial presentation on compressive holography at the 2011 Optical

Society of America topical meeting on Digital Holography. Our goal is to describe basic
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mathematical tools for decompressive analysis and reconstruction of holographic data. To

aid the reader, we have uploaded Matlab codes for the procedures described. Given that

compressive holography may be particularly effective in reconstruction of high pixel count

images, we pay particular attention to digital propagation of fields with large numbers of

samples in Section 3. We then turn to holographic image processing in Section 4. Holographic

image processing differs from radar and other coherent imaging systems only in the need

to filter the signal from the reference in isolating the coherent field from irradiance data.

Traditionally, this isolation is done by putting the holographic signal on a spatial or temporal

sideband [22]. As demonstrated in Section 4, however, constrained nonlinear estimators can

isolate the holographic image from reference and background from in-line holographic data.

Following the coherent image estimation method, we present a simulation of compressive

holography on 3D object reconstruction from 2D holograms in Section 5.

Incoherent image estimation is discussed because if the scattering phase is random (e.g.

if speckle is present) then holographic images may not be sparse in the conventional com-

pressive sensing sense. However, the underlying scattering amplitude (e.g. the incoherent

image) is generally sparse. The method described in Section 6 enables decompressive esti-

mation of incoherent images from digital holographic data. In last two sections, we present

simulations of compressive holographic reconstruction of diffuse objects. Section 7 describes

3D tomography for diffuse objects, imposing sparsity constraints on the incoherent image.

Finally, Section 8 describes image reconstruction from sparse aperture holograms. Since

the incoherent image estimation takes advantage of expanded modulation transfer function

(MTF) support, the method mitigates the incomplete measurements of sparse aperture. We

begin this agenda by briefly explaining the procedure of compressive holography in terms of

compressive sensing and digital holography.

2. The Procedure of Compressive Holography

To apply compressive sensing to digital holography, one must first determine the features in

the object that are likely to be present so that compressive inference methods may be applied.

The object vector which describes these features to be reconstructed is expressed as a linear

sum of a generally linearly dependent set of dictionary vectors. A sparse reconstruction of

the object means that only a small number of these dictionary vectors are used for any given

reconstruction of an object. Examples of the dictionary vectors include the canonical basis

for groups of point-like objects, total variation (TV) constraints for objects with few edges

and large uniform regions, wavelet bases, and the Fourier basis. There are restrictions about

the “coherence” [23] between the measurements and the object basis that limit the fidelity

of the reconstructions, namely, whether or not the correct dictionary elements are inferred

to be present in the object vector.
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A digital holography setup typically comprises these parts: a source of coherent light such

as a laser, an object to test, and an electronic photometric sensor. Light is scattered from

the object to test and falls on the sensor plane. Often an interferometer such as a Michelson

or Mach-Zehnder setup is used to create a reference beam to be interfered on the sensor.

Typical geometries used for digital holography include Gabor in-line holography and Leith-

Upatnieks (LU) off-axis holography. Because only the intensity of the interference between

the reference and object-scattered fields is measured, there is an ambiguity in the object

field often called the conjugate field or image. The choice of geometry is often dictated by

the acceptable ambiguity.

One or more holograms may be acquired, perhaps moving the object or sensor between

each acquisition. This data is processed to produce a reconstruction of the object using a

given dictionary. Determining which dictionary elements and the magnitudes of their weights

is typically achieved by basis pursuit or ℓ1 minimization with a least-squares fit to the data.

There are many algorithms for solving basis pursuit and ℓ1 minimization problems. For

example, TwIST is applied in much of the work detailed here because of its flexibility and

simplicity. To apply these algorithms, a numerical simulation of the hologram formation

process is used so that the data may be fit to successive candidate objects. This simulation

usually includes a means of digital propagation that models the diffraction of fields through

space. Digital holography differs from radar in that the transverse scale of these fields may

span 103 − 105 wavelengths. Because of the computation and storage required to propagate

wide area fields often encountered in compressive holography, we have included details on

this step.

3. Field Propagation

Digital holography numerically backpropagates the scattered field by using a field propaga-

tion model [24]. Because the propagation is performed in discrete domain, the field prop-

agation model must sample the field at a rate to avoid aliasing, yet not overly increase

computational and storage costs. In general the propagated object field is given by the

Rayleigh-Sommerfeld diffraction formula [25]. Under the paraxial approximation in optics,

the object field is simplified to the model of Fresnel approximation method (FAM),

Eo(x, y) = kejkz

j2πz
ej

k
2z

(x2+y2)
∫∫

dudve−j k
2z

(2xu+2yv)Es(u, v)e
j k
2z

(u2+v2), (1)

where spatial coordinates (x, y) and (u, v) respectively indicate the object plane and the

detector plane. Note that k is the wavenumber, λ is the wavelength, and z is the propagation

distance in the optical axis.

In the discrete measurement, the pixel resolution δx and the field of view (FOV) ∆x are
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expressed by [26]

δx =
λz

Nδu
, (2)

∆x =
λz

δu
, (3)

where N is the number of detector pixels. δx and ∆x follow the Fourier relationship between

the object domain x and the detection domain u. They are functions of a scaling factor λz

so the propagation distance z is a critical parameter to consider for processing design. The

computational simplicity of FAM arises in that the FAM uses a single 2D Fourier transform

for backpropagation. Note that the validity of FAM is only guaranteed for paraxial imaging.

The angular spectrum method (ASM) has a different analytical derivation without any

approximation. The object field Eo(u, v) is considered as a 2D convolution of the scattered

field Es(x, y) and a backpropagation kernel. By using the convolution theorem in Fourier

analysis, the ASM is

Eo(x, y) =
1

(2π)2

∫∫

du dv e−j(kuu+kvv)Es(u, v)
∫∫

dku dkv ejz
√

k2−k2u−k2vej(kux+kvy), (4)

where the term ejz
√

k2−k2u−k2v is the transfer function that is Fourier transformed from the

point spread function [27].

Due to the difference of analytical forms, the ASM has the different pixel resolution and

FOV [28].

δx = δu, (5)

∆x = Nδu, (6)

where δx and ∆x of ASM are independent to the propagation distance z, different from

those of FAM. The computational complication of ASM happens due to the two 2D Fourier

transforms for backpropagation. Compared to the FAM, the computational size increases

linearly proportional to z because the ASM does not have the scaling factor. Thus, the ASM

is theoretically more accurate than the FAM. However, its computational load is problematic

in far field imaging.

To overcome the storage and computational burdens of ASM but preserve its accuracy,

we propose the Fresnel Scaled Angular Spectrum Method (FSASM). The propagated field,

as in the FAM, is expressed as Eo(x, y) = S(x, y)ke
jkz

j2πz
ej

k
2z

(x2+y2), with S(x, y) being a slowly-

varying function multiplied by a spherical wave. This may be substituted into Eq. (4) and

the order of integration changed:

S(x, y) = jze−jkz

2πk

∫∫

du dv e−j(kuu+kvv)Es(u, v)
∫∫

dku dkv ejz
√

k2−k2u−k2vej(kux+kvy)e−j k
2z

(x2+y2).
(7)
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We define S̃(kx, ky) =
∫∫

dx dy e−j(kxx+kyy)S(x, y) and insert it to find

S̃(kx, ky) =
jze−jkz

2πk

∫∫

du dv e−j(kuu+kvv)Es(u, v)
∫∫

dku dkv ejz
√

k2−k2u−k2v
∫∫

dx dy e−j(kxx+kyy)ej(kux+kvy)e−j k
2z

(x2+y2).
(8)

The inner integral is evaluated as

S̃(kx, ky) =
jze−jkz

2πk

∫∫

du dv e−j(kuu+kvv)Es(u, v)
∫∫

dku dkv ejz
√

k2−k2u−k2v

[

−2πjz
k

ej
z
2k [(ku−kx)2+(kv−ky)2]

]

.
(9)

To continue, we separate the exponential kernel ejz
√

k2−k2u−k2v = ejzR(ku,kv)ejkze−j z
2k

(k2u+k2v)

with R(ku, kv) =
√

k2 − k2
u − k2

v −k+(k2
u+k2

v)/2k. This transforms the convolution integral

into two successive convolutions, one of which applies the fourth and higher-order terms

of the angular spectrum kernel, and the second of which applies the second-order Fresnel

diffraction term which is implemented by the conventional FAM. The FSASM is a modified

FAM which pre-corrects the FAM for the fourth-order and higher terms missing from the

FAM before applying the FAM. Inserting this separated kernel and cancelling terms, the

result is
S̃(kx, ky) =

z2

k2
ej

z
2k

(k2x+k2y)
∫∫

du dv e−j(kuu+kvv)Es(u, v)
∫∫

dku dkv ejzR(ku,kv)e−j z
k
(kukx+kvky).

(10)

Reinserting Eo(x, y) and rearranging again, the result is

Eo(x, y) =
zejkz

j(2π)k
ej

k
2z

(x2+y2)
∫∫

dkx dky ej(kxx+kyy)ej
z
2k

(k2x+k2y)D(kx, ky),

with

D(kx, ky) =
1

(2π)2

∫∫

dku dkv e−j kuz
k

kx−j kvz
k

kyejzR(ku,kv)
[∫∫

du′ dv′ e−j(kuu′+kvv
′)Es(u

′, v′)
]

.

(11)

To transfrom the outer integral into a Fresnel diffraction integral, we substitute u = −kxz
k

and v = −kyz

k
:

Eo(x, y) =
kejkz

j2πz
ej

k
2z

(x2+y2)
∫∫

dkx dky e
−j k

z
(ux+vy)ej

k
2z

(u2+v2)D(u, v),

with

D(u, v) = 1
(2π)2

∫∫

dku dkv ej(kuu+kvv)ejzR(ku,kv)
[∫∫

du′ dv′ e−j(kuu′+kvv
′)Es(u

′, v′)
]

.

(12)

This is the desired result. Note that no approximations have been made from deriving the

FSASM from the ASM. The diffraction calculation has been divided into two parts. The

first part is to calculate the field D(u, v) that is corrected for fourth-order and higher terms

of the diffraction kernel. As shown above, this is accomplished using the ASM in the calcu-

lation of D(u, v) with the kernel ejzR(ku,kv) rather than ejz
√

k2−k2u−k2v . The second step is to

apply the FAM to the corrected data D(u, v) in the calculation of Eo(x, y). This allows the

rescaling inherent to the FAM so that the sampling rate may be increased and therefore the

computational burden decreased.
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The limitation of the FSASM is that the convolution in the calculation of D(u, v) increases

the support of D(u, v) relative to Es(u, v) increasing N in Eq. (2) and therefore a smaller

sampling rate δx is required. The sampling of the kernel ejzR(ku,kv) in the frequency domain

is aliased for a sufficiently large z unless the support of D(u, v) is increased. If the support of

D(u, v) is permitted only to double compared to Es(u, v) so that δx is halved, then z < 2Nδu4

λ3 .

In practice this estimate, like the conditions governing the use of the FAM, may be overly

stringent as the higher-order oscillatory terms tend to cancel more readily. While the FSASM

is exact, its computational burden may become overly great with large z as the ASM does.

Unlike the ASM, the limitation ultimately lies in the approximation of the rapidly-varying

component of the field, the spherical wave, by a quadratic approximation given by the FAM.

Both the ASM and the FSASM are compared by using off-axis hologram data in Fig. 1.

A point object was experimentally interfered by a spherical reference field at 2 m range.

Fig. 1(a) shows 200 × 200 pixel image from original 1944 × 1944 pixel image for the phase

of object scattered field. We propagate the scattered field back to the object plane by using

two propagation methods. Fig. 1(b) shows 1944 × 1944 pixel image for the backpropagation

with the ASM. The point object occupies approximately 135 pixels in diameter by using

the FWHM criterion. Since the pixel resolution is equivalent to the pixel pitch in the ASM,

Eq. (6), the point size is estimated to 297 µm approximately. Fig. 1(b) shows 29 × 29 pixel

image for the backpropagation with the FSASM. Since the Fresnel scaling factor is applied

to the FSASM, the pixel resolution is 296 µm corresponding to the object size of the ASM.

For a given aperture size, the effective pixel resolution is determined by the Fraunhofer

formular [25]. Thus, the FSASM does not suffer from the upsampled data unlike the ASM.

The FSASM achieves 575.4 mm FOV, however, the ASM does only 4.3 mm due to the

upsampled resolution.

4. Reconstruction of Compressive Holograms

This section presents the mathematical model for holographic tomography. To be able to

apply linear field propagation models such as the FAM, ASM, and FSASM, one must deter-

mine the fields to be propagated from the intensity of the holograms. In the reconstruction

process, algorithmic filtering replaces the conventional holographic methods. The hologram

intensity I(u, v) is expressed by interfering scattered field Es(u, v) and reference field R(u, v).

I(u, v) = |R(u, v) + Es(u, v)|2 , (13)

= |R(u, v)|2 + |Es(u, v)|2 (14)

+R∗(u, v)Es(u, v) +R(u, v)E∗

s (u, v),

where the superscript ‘*’ denotes a complex conjugate and (u, v) indicates the spatial coor-

dinates. The squared field term |Es(u, v)|2 produces the autocorrelation term in the Fourier
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domain. The conjugate term R(u, v)E∗

s (u, v) also produces the twin image in the reconstruc-

tion.

Gabor holography possesses an ambiguity due to the squared-field term and the conjugate

term due to the in-line geometry [29]. If the object is known to be far from the sensor plane,

this ambiguity can be partially removed by filtering the scattered field axially to remove

the conjugate and squared-field terms. In Gabor holography, the term |R(u, v)|2 is simply a

constant, hence the effect of |R(u, v)|2 can be removed by eliminating the constant term at

the origin in the Fourier transform of the interference irradiance measurements I(u, v). Since

we simply assume R(u, v) is 1, we may proceed with R∗(u, v)Es(u, v) + R(u, v)E∗

s (u, v) +

|Es(u, v)|2 = 2Re{Es(u, v)}+ |Es(u, v)|2 = 2Re{Es(u, v)}+ e(u, v).

The scattered field Es is defined under the Born approximation as

Es(u, v) =

∫∫∫

dxdydzη(x, y, z)h(u− x, v − y, z), (15)

where h is the point spread function [27] and η is the scattering potential of 3D object. Note

the sample spacings are ∆x = ∆y = ∆ and the sampling pitch is ∆z in the z-axis. Also, the

number of pixels along each dimension of the detector is N . The discrete model of scattered

field can be expressed by using the ASM,

En1n2
= F−1

2D

{

∑

l

η̂m1m2le
ikl∆zeil∆z

√
k2−m2

1
∆2

k
−m2

2
∆2

k

}

, (16)

where eikl∆z indicates the phase delay of individual slices in the 3D datacube and η̂m1m2l is

the Fourier transform of discrete scattering potential ηm1m2l = η(m1∆,m2∆, l∆z).

A linear transformation of the holographic measurement is expressed by using Eq. (16),

ḡ = G2DQBf, (17)

where B = bldiag(F2D, F2D, · · · , F2D) with F2D being the matrix representing the 2D DFT

whose size is (Nx × Ny) × (Nx × Ny) and “bldiag” denoting the block diagonal matrix,

Q = [P1P2 · · ·PNz
] with [Pl]m1m2

= eikl∆zeil∆z

√
k2−m2

1
∆2

k
−m2

2
∆2

k ; [Pl]m1m2
represents the element

of the matrix Pl at the intersection of the row m1 and the column m2, and G2D represents

the 2D inverse DFT matrix. The Gabor hologram measurement may be simplified by

g = 2Re{ḡ} = 2Re{G2DQBf} = 2Re{Hf}+ e+ n, (18)

where g ∈ RNx×Ny represents the Gabor hologram from which the constant term is removed,

and e and n denote vectorized |E(x, y)|2 and additive noise, respectively.

The nonlinear term e is filtered in the measurement plane since the reconstruction algo-

rithm propagates only diffraction patterns. The conjugate term is also filtered by confining
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the estimation to only the one side of the measurement plane (i.e., z ≥ 0). In this manner,

we may effectively isolate most of the errors that result from the Gabor hologram.

The linear transformation model, Eq. (18), is inverted by decompressive inference by either

selecting a basis, typically a particular wavelet basis, on which f may be assumed to be sparse

or by enforcing a sparsity constraint on the total variation, as defined by Rudin et al. [30],

of f . We choose the second approach here and estimate f as

f̂ = argmin
f

||f ||TV such that g = Hf, (19)

where ‖f‖TV is defined by

‖fk‖TV =
∑

k

∑

n1

∑

n2

|∇(fk)n1,n2
|, (20)

where fk denotes a 2D plane of the 3D object datacube. We adapt the two-step iterative

shrinkage/thresholding algorithm (TwIST) [31] to solve this optimization problem.

5. Holographic Tomography

As a first example of compressive holography, we consider single shot holographic tomography

by using the reconstruction model of Section 4. While the volume reconstruction from a

single 2D hologram is ill-posed, this problem can be solved by imposing sparsity constraints

on the reconstructed volume. With the total variation constraints, structure is localized in

space because the total variation is minimized when the fewest edges are present in the

reconstruction.

The simulation code (e.g. a demo file, “mainHoloTomo.m”, and supplemental files,

“Functions”) is composed of six functional blocks as presented in the uploaded files. In the

Parameters block, a Gabor holographic measurement is designed at a wavelength of 0.633

µm. We generate a 3D datacube composed of 64 × 64 × 5 pixels in the object space. The

pixel pitch is designed considering the the aliasing analysis in the appendix. The maximum

phase variation of the angular spectrum is less than π, using Eq. (33) with a pixel pitch of

30 µm. The effective aperture size of the hologram measurement is determined by the size

of the object features, so the space resolutions are given by ∆x ≈ w and ∆z ≈ 4w2/λ [8].

Assuming a cross section of about 2 pixels (e.g. 60 µm), the axial resolution achieves about

23 mm in reconstruction.

In the Object Generation block, 2D objects such as alphabet letters are axially distrib-

uted as shown in Fig. 2(a). Note the axial coordinate goes from the left (z = 0) to the right

(z = 92mm) and the first object plane (z = 0) is the measurement plane. In the Propa-

gation Kernel block, angular spectrums for individual slices are defined depending on the

propagation distances. Since this simulation is performed in near-field imaging, the ASM,

9
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Eq. (16), numerically propagates the object field to the measurement plane. We use a plane

wave for the object illumination, thus, the illumination field is simply set to one. Fig. 2(b)

shows phases of the propagation kernels in the datacube.

In the Field Measurement and Backpropagation block, propagated fields are linearly

summed in the measurement plane as shown in Fig. 2(c). To demonstrate algorithmic field

filtering, the squared fields e, Eq. (18) of objects are added to the propagated fields. Then,

the measurement fields are propagated back to the original object planes by using adjoint

propagation kernels. The backpropagation of a Gabor hologram is an ill-conditioned inverse

problem so the individual slices suffer from out-of-focus images from the other slices in

Fig. 2(d).

In the Propagation Operator block, we define forward and backward propagation oper-

ators. Here the backward propagation is the adjoint operation of the forward propagation.

Since Gabor holography generates only real values in Eq. (18), both propagations take only

real values of propagated fields in the measurement plane.

In the TwIST Algorithm block, the object estimate is iteratively updated under sparse

constraint on TV basis. The TwIST algorithm is composed of a least square minimization

term and a TV based denoising term, which are regularized by the parameter τ . Also, the

number of iterations is a critical parameter to stably converge to the solution. Since the TV

based denoising term is not defined in complex domain, the real and imaginary parts are

independently processed in a vectorized form. The vectorized data of measured fields are

plugged into the linear inverse model of iterative method. Fig. 2(e) shows the decompressive

reconstruction using the TwIST algorithm. The decompressive reconstruction is superior to

the backpropagation since the out-of-focus images are effectively removed. The object field

is filtered in 3D object space by splitting the squared field in the measurement plane. This

reconstruction model can be applied to single shot tomography by replacing the measured

fields with a real Gabor measurement.

6. Holographic Data Process of Diffuse Objects

This section describes the incoherent image estimation model to allow holographic tomogra-

phy of a diffuse object with speckle suppression. Incoherent image estimation using multiple

speckled realizations effectively retrieves the smooth features destroyed by speckle effects.

The field randomness, caused by speckle, degrades image resolution of the reconstructed

fields [11]. Since the sparsity constraint is imposed on smooth features of incoherent scattering

density α, we decompressively reconstruct the scattering density with fewer measurements.

The high sensitivity of LU holography enables compressive holography for weak scattering

of diffuse objects [15]. In LU holography, off-axis geometry is used to make a linear phase

reference field R = ejαu, where α is angular frequency [22]. The object-scattered field is sepa-
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rated from the other terms in the Fourier domain thanks to the linear phase term. Applying

Fourier filtering to Eq. (15), the scattered field term R∗(u, v)Es(u, v) can be extracted.

The scattered field is also defined by the Born approximation and the ASM in the same

manner with Section 4. After Fourier filtering, the holographic measurement has complex

field values without the squared term and the conjugate term. Then, the k-th holographic

measurement gk can be written by,

gk = Hfk + wk, (21)

where gk ∈ CM×1 with M = Nx×Ny and wk indicates independent additive Gaussian noise.

For fully developed speckles, the 3D scattered field f = [f1 f2 · · · fN ]
T with N = Nx ×

Ny ×Nz, has the complex circular Gaussian probability density [32]:

p(f) =
1

πNdet(Rf )
exp

(

−fHRf
−1f

)

, (22)

where E[f ] = 0, Rf = E[ffH ] = diag(E[|f1|2],E[|f2|2], · · · ,E[|fN |2]) =

diag(α1, α2, · · · , αN ) = diag(α). Symbolically, we write f ∼ CN(0, Rf ). The covariance W

is defined by σ2I with I denoting the M ×M identity matrix. This statistical model implies

that g has also a complex Gaussian probability density with zero mean and covariance Rg:

g ∼ CN(0, Rg), with Rg = HRfH
H + σ2I = H (Rf + σ2I)HH .

Since HHH = I, the minimum-norm solution [33] to the inverse problem in Eq. (21) is

given by

f̂k = HH
(

HHH
)

−1
gk = HHgk = HHHfk +HHwk, (23)

from which an estimate of the incoherent image of the scattering field (e.g. the diagonal

elements of Rf ) can be formed as

ŝn =
1

K

K
∑

k=1

|f̂nk|2. (24)

Let H = [h1 h2 · · · hN ] where hn denotes the n-th column of H, and [HHH]mn = 〈hm, hn〉 =
hm

Hhn. Thus, the expected value of the estimate ŝ can expressed as

d = E[ŝ]

=
1

K

K
∑

k=1

Diag
(

E[f̂kf̂k
H
]
)

= Diag
(

E[f̂ f̂H ]
)

= Diag
(

HHHRfH
HH + σ2HHH

)

(25)
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where the third equality holds because the probability density of f̂k is the same for all k. In

particular, the fourth equality in Eq. (25) indicates that

E[ŝn] =
N
∑

m=1

|〈hn, hm〉|2αm + σ2〈hn, hn〉 =
N
∑

m=1

|hn
Hhm|2αm + σ2‖hn‖2, (26)

where ‖h‖ denotes the Euclidean norm of h. Then Eq. (26) implies that

d = E[ŝ] = Bα + σ2W, (27)

where d are defined as synthetic measurements.

Eq. (27) suggests we may solve the constrained optimization problem:

α∗ = argmin
α

1

2
‖d− Bα‖22 + βΦ(α). (28)

The functional Φ(α) imposes constraints on α. For decompressive inference, Φ enforces the

sparsity constraints. When the incoherent scattering field is expected to have a smooth

surface, we can assume that the gradient of the incoherent image is sparse. This sparsity can

be incorporated by minimizing the TV of the estimate. We define TV for our problem as

Φ(α) = ‖α‖TV =
∑

nx

∑

ny

∑

nz
|∇(αnz

)nx,ny
|.

The sparsity-constrained estimates are known to be near optimal when the columns of

the system matrix form approximately an orthonormal basis [34]. To transform our system

matrix to such an orthonormal basis, we apply a preconditioning method and convert d =

Bα + σ2W to d̃ = Pd = PBα + σ2PW = B̃α + σ2W̃ , and we solve

α∗ = argmin
α

1

2
‖d̃− B̃α‖22 + βΦ(α), (29)

instead of Eq. (28).

If B has full rank, the preconditioner P may be chosen such that B̃ = PB is as unitary

as possible. An immediate choice of unitary B̃ would be the identity matrix: B̃ = I. In this

case, the preconditioner P is merely the inverse of B and the estimation problem becomes

an inverse problem. However, the matrix could often be rank deficient or ill-conditioned,

some nonzero singular values of B either excessively amplify the noise or cause numerical

instability. To alleviate this problem, we choose P in the Tikhonov-regularized sense. That

is P = (BHB + λtI)
−1BH , where λt is a Tikhonov regularization parameter. Note that λt

suppresses or ignores a small number of singular vectors associated with numerically unstable

or zero singular values.

7. Diffuse Object Tomography

As a second example of compressive holography, we consider diffuse object tomography by

using the incoherent image estimation model of Section 6. The coherent image estimation

12



model of Section 4 cannot be used for diffuse object imaging due to speckle effects. To avoid

these complications, we utilize full-developed speckled realizations to statistically obtain the

incoherent scattering density. By imposing sparsity constraints on the total variation of the

incoherent scattering density, incoherent structure is localized in space and the speckle is

suppressed.

Processing of diffuse object tomography is again described in the processing blocks

in the uploaded code (e.g. a demo file, “mainDiffuseTomo.m”, and supplemental files,

“MyFunctions”). In the Parameters block, we set up holographic parameters and object

space. A LU hologram is taken using a coherent source at the wavelength of 0.633 µm. We

generate a 3D datacube composed of 64× 128× 3 pixels in the object space. The pixel pitch

is designed to 50 µm at ± 50 mm propagation range.

In the Object Generation block, three rectangular shapes are defined axially distributing

in Fig. 3(a). We design an objective lens to collect the scattered fields with an optical

magnification. The center object plane is one-to-one imaged to the measurement plane at z =

0, and the other planes are placed in -50 mm and +50 mm ranges relative to the measurement

plane. In the Propagation Kernel blocks, the ASM and the plane wave illumination are used

in the same manner with holographic tomography in Section 5. Fig. 3(b) shows phases of the

propagation kernels depending on the propagation distances. Since the center object plane

is imaged to the measurement plane, the plane does not need a propagation phase.

In the Holographic Measurement and Backpropagation block, multiple speckled realiza-

tions support the incoherent image estimation for diffuse object tomography. Illumination

randomized by multiple speckled realizations is a form of partially coherent illumination. To

generate the randomized illumination, random fields are applied resulting in a complex ob-

ject field. The backpropagation of a single speckled realization shows the severely degraded

image in Fig. 3(c). The averaged backpropagation of multiple speckled realizations show the

better image in Fig. 3(d). Nevertheless, the tomographic image is still degraded by speckles

and out-of-focus images.

In the Incoherent System Matrix block, the incoherent system matrix Q is generated by

Fourier transforming the squared PSF. The system matrix Q projects the original 3D object

to the backpropagated image via multiple speckled realizations. The Tikhonov regularization

alleviates the ill-conditioned problem in tomographic reconstruction. Using the precondition-

ing method in Section 6, the inverted datacube shows better tomographic image reducing the

out-of-focus features in Fig. 3(e). Note the Tikhonov regularization parameter λt is 1.0e-08

in the reconstruction.

In the TwIST Algorithm block, forward and backward projection operators are defined.

The forward projection operator D is formed by a multiplication of Tikhonov-regularized

inversion of Q and Q (e.g. pinvQ ∗Q). The backward projection operator DT is an adjoint
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of the forward projection operator. The averaged backpropagation is inverted using the

Tikhonov-regularized inversion of the incoherent system matrix, pinvQ, and input to the

TwIST algorithm. The TwIST algorithm is regularized by TV sparsity constraints according

to Eq. (28). The parameter τ and the number of iterations are controlled to stably converge

to the optimal solution. Fig. 3(f) shows the speckle suppressed image with 30 speckled

realizations. Some artifacts remain in the overlapping region to the detector’s perspective,

due to the ambiguity of decompressive inference.

8. Sparse Aperture Holography

As a third example of compressive holography, we consider sparse aperture holography which

allows high pixel count 2D imaging. Mosaics of low cost 2D sensor arrays achieve large aper-

ture digital holography of hundreds of mega pixel fields. Scanning-based synthetic aperture

holography is a method of coherent aperture synthesis. The major challenges are subaperture

registration errors and the relative phase instability of the reference field to the object field

due to sources such as vibration and thermal fluctuation [35].

A sparse aperture can avoid a lengthy acquisition time as well as computational compen-

sation for the phase instabilities. Synchronization of the sensors in a sparse aperture may

enable snap-shot detection eliminating phase instability. Using spatially incoherent laser il-

lumination enables incoherent synthesis of apertures and a corresponding enhancement of

MTF support [25]. Radio telescopes employ the same techniques to measure a large MTF

support with a sparse aperture [36]. In addition, incoherent synthesis eliminates the speckle

problems common when reconstructing diffuse objects using holography.

We compare coherent and incoherent bandpasses in a sparse aperture system with three

square apertures. The MTF is obtained by the autocorrelation of the transmittance of a

sparse aperture [27]. Fig. 4.(b) shows the MTF bands are located in the high frequencies,

increasing the maximum frequency of the MTF. Thus, sparse aperture holography can detect

higher frequency information than a single wide aperture system with equal detector area.

While the loss of mid-band information can be problematic, decompressive reconstruction is

used to mitigate it.

Decompressive reconstruction uses the incoherent image estimation supported by multi-

ple speckled realizations. Decompressive inference can help mitigate the loss of some MTF

support not sampled by the incoherent MTF by imposing sparsity constraints on an inco-

herent source or scatterer reconstruction, in a manner generalizing methods like the CLEAN

algorithm. [36]

In this example, sparsity constraints on total variation decompressively localizes 2D

structure alleviating the ambiguity of sparse measurement. The simulation of sparse aper-

ture holography is mostly similar to that of diffuse object tomography in Section 7. The
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codes are also uploaded for the coherent estimation (e.g. a demo file, “mainSparseCoh.m”,

and supplemental files, “Functions”) and the incoherent estimation (e.g. a demo file,

“mainSparseIncoh.m”, and supplemental files, “MyFunctions”). A 2D phantom object is

generated with 128× 128 pixels in 2 m range as shown in Fig. 5(a). LU holography is used

for lensless holographic imaging at the wavelength of 0.633 µm. The pixel pitch is assumed

to be 100 µm in the measurement plane, avoiding the aliasing issue and achieving 99 µm

pixel resolution in the object plane.

In the Sparse Aperture Generation block, randomized distribution of the sparse aper-

ture maximizes decompressive inference in the measurement plane. This design follows the

coherence restriction between the measurements and the object basis for the high fidelity

reconstruction. In remote imaging, scattered fields have a lot of information redundancy in

the measurement plane. Individual apertures are designed to be point-like detectors to re-

duce the measurement redundancy, and the sparse distribution of point-like apertures may

be supported by a phase mask in the optical domain. Fig. 5(b) shows a sparse aperture

design with a 16 percent fill factor.

In the Propagation Operators block, the FSASM is used to represent optical fields in

the field range with compactness and reliability (see Section 3). Fig. 5(c) and Fig. 5(e)

compare averaged backpropagations of the coherent and the incoherent image estimation.

Fig. 5(e) shows high frequency features of the object because of the expanded bandpass

of the incoherent image estimation. The decompressive reconstruction of incoherent image

estimation, Fig. 5(d), is superior to that of coherent image estimation, Fig. 5(f), since the

incoherent image estimation retains high frequency features. Fig. 5(f) shows a high quality

and speckle suppressed image, although some high frequency features are lost due to the

sparse and speckled measurement. Note the decompressive reconstruction was performed by

the TwIST algorithm.

9. Conclusion

Three examples for compressive holography were given by following the practical procedures

of compressive holography. The examples demonstrated how the compressive holography

procedures utilized the co-design of non-linear estimators with sampling strategies and ge-

ometries based on object sparsity priors. The small size of the simulations allows most readers

to run and understand them directly.

Since holographic measurement naturally multiplexed and compressed image data, we can

demonstrate the objective of more signal values with fewer measurements. The compressive

design can be effectively applied to high dimensional image estimation with high fidelity.

This approach exhibits low cost and high feasibility so it will be more interested as computer

processing power rapidly advances.
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Appendix: Aliasing Analysis on the ASM

Aliasing in the field representation limits the performance of numerical field propagation,

since discrete signal processing is generally governed by Shannon’s sampling theorem. To

analyze the aliasing condition under the sampling theorem, we calculate the maximum phase

variation in the adjacent pixels. 1D mathematical forms are considered for the simplicity in

this analysis.

In the ASM, we investigate the phase terms of the spherical field R(u, v; zr) and propa-

gation kernel H(fu, fv; zd). Here we assume the hologram data is multiplied by a conjugate

spherical field for far field imaging. The phase variation ∆φR(u; zr) of the spherical field

R(u; zr) is calculated at the smallest increment δu

∆φR(u; zr) =
2π

λ

{

√

z2r + (u+ δu)2 −
√

z2r + u2
}

. (30)

Using the binomial expansion with the condition that the distance zr is larger than the

aperture width u, the phase change is obtained as

∆φR(u; zr) =
2π

λ

{

2uδu+ δu2

2zr

}

=
π

λzr
2uδu < π, (31)

where the term δu2 is negligible in comparison to the other term 2uδu. A failure in the

inequality causes aliasing, corrupting the phase information in the propagation process.

The phase variation ∆φH(fu; zd) of the angular spectrum H(u; zd) is calculated at the

smallest increment δfu

∆φH(fu; zd) =
2π

λ
zd

{

√

1− λ2(fu + δfu)2 −
√

1− λ2f 2
u

}

. (32)

Using the binomial expansion with the condition that the term λ2f 2
u is less than 1, the phase

change becomes

∆φH(fu; zd) =
2π

λ
zdλ

2

{

2fuδfu + δf 2
u

2

}

= πzdλ
1

δu

1

∆u
< π, (33)

where the term δf 2
u is negligible to the term 2fuδfu.

The accuracy of this analysis is limited by the binomial approximation, so the ASM can

suffer from more aliasing than this analysis.
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Fig. 1. Comparison of field propagations : (a) phase of object scattered field,

(b) backpropagation w/ ASM, and (c) backpropagation w/ FSASM.
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Fig. 2. Simulations for holographic tomography : (a) 3D object (View 1), (b)

phase of transfer functions (View 2), (c) scattered field, (d) backpropagation

(View 3), and (e) compressive reconstruction (View 4).
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Fig. 3. Simulations for diffuse object tomography : (a) 3D object (View 5), (b)

phase of propagation kernels (View 6), (c) backpropagation of single speckled

realization (View 7), (d) backpropagation averaged by 30 speckled realizations

(View 8), (e) backpropagation using the Tikhonov regularization w/ 30 speck-

led realizations (View 9), and (f) compressive reconstruction w/ 30 speckled

realizations (View 10).
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Fig. 4. Coherent and incoherent bandpasses in sparse aperture design : (a)

coherent bandpass, (b) incoherent bandpass, and (c) cross-section of incoherent

bandpass. Note that ∆ is the space of subapertures.
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Fig. 5. Simulations for sparse aperture holography : (a) 2D object, (b) sparse

aperture, (c) averaged backpropagation of coherent estimation model, (d) com-

pressive reconstruction of coherent estimation model, (e) averaged backprop-

agation of incoherent estimation model, and (f) compressive reconstruction of

incoherent estimation model.
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