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Abstract 29 

The drug development industry is faced with increasing costs and decreasing success rates.  New ways 30 
to understand biology as well as the increasing interest in personalized treatments for smaller patient 31 
segments requires new capabilities for the rapid assessment of treatment responses.  Deployment of 32 
qualified imaging biomarkers lags apparent technology capabilities.  The lack of consensus methods and 33 
qualification evidence needed for large-scale multi-center trials, as well as the standardization that 34 
allows them, are widely acknowledged to be the limiting factors.  The current fragmentation in imaging 35 
vendor offerings, coupled with the independent activities of individual biopharmaceutical companies 36 
and their contract research organizations (CROs), may stand in the way of the greater opportunity were 37 
these efforts to be drawn together.  A preliminary report of the Quantitative Imaging Biomarkers 38 
Alliance (QIBA) activity was presented at a meeting of the Extended PhRMA Imaging Group sponsored 39 
by the Drug Information Agency (DIA) in October 2008.1  The clinical context in Lung Cancer and a 40 
methodology for approaching the qualification of volumetric CT as a biomarker has since been 41 
reported.2,3  This report reviews the effort to collect and utilize publicly available data sets to provide a 42 
transparent environment in which to pursue the qualification activities in such a way as to allow 43 
independent peer review and verification of results.  This article focuses specifically on our role as 44 
stewards of image sets for developing new tools. 45 

 46 

Key words: quantitative imaging; therapy response; imaging biomarker; volumetric CT; regulatory 47 
pathway 48 



 

 

Unmet Medical Needs as Business Drivers for Qualifying Quantitative Imaging 49 

Problems with qualitative impressions of longitudinal changes in tumor burden before and after 50 
treatment include inadequate levels of inter-reader concordance when responses are less than 51 
dramatic.  Discordance among "readers" has led to skepticism about medical imaging as a biomarker of 52 
response, as well as confusion about whether some investigational new drugs should be approved for 53 
general use. 54 

Subjective impressions are sufficient when the impact of treatment is so robustly effective that changes 55 
are conspicuous, just as they are when the therapy fails so completely that disease progression is 56 
obvious.  However, as the "war on cancer" matures from our initial hopes of curing the disease into 57 
aspirations for converting patient management from acute therapy to manage morbidity over 58 
progressively longer and longer time horizons, needs for rapidly assessing the incremental value of 59 
adding new drugs to the standard of care are becoming increasingly important.  60 

For an individual patient in an ordinary medical setting, being prescribed a marketed treatment regimen 61 
that has been established as sufficiently safe and effective in large populations is analogous to starting a 62 
personal clinical trial.  This is because even the best treatment regimens fail in a some portion of 63 
patients with the disease, and even relatively safe therapies cause serious side effects in some people.  64 
These principles seem to hold for all treatments, and particularly for anti-neoplastic therapies.  Patients 65 
want to know as soon as possible if their new-to-them treatment is conveying benefits.  If it is not, then 66 
they want to launch a search for alternatives as soon as possible.  67 

No one wants to waste time, effort, and money on treatments that are not helpful.  From this 68 
perspective, the interests of individual patients and third party payers seem highly concordant.  Many 69 
new treatments are expensive.  Some are cost effective in individuals, but less so in large populations.  70 
New methods are needed to determine who is who.  Until definitive enrichment tools are developed for 71 
matching individual patients to specific treatments, the early assessment of response will remain the 72 
primary mechanism for sparing resources. 73 

Biopharmaceutical enterprises view clinical trials of novel products the same way as the other 74 
stakeholders in the management of cancer.  Like individual patients, industry wants its products to 75 
succeed for the patients who use them, and as a consequence, produce a net-positive return on 76 
investment.  More sensitive biomarkers of response would allow industry to reduce the number of 77 
patients required to test new products, as well as decrease the amount of time that patients need to 78 
remain on-study.  The net effect would increase the number of new treatments for unmet medical 79 
needs that reach the market and make a positive impact on human health, primarily by allowing 80 
investigational new treatments to fail faster than is currently possible in clinical trials that use survival or 81 
clinical signs of progression as their endpoints. 82 

Spatially specific biomarkers could provide more informative data than clinical outcomes in patients 83 
with heterogenous metastases.  Consider the case shown in Figure 1.  This 21 year old man presented 84 
with a chief complaint of shortness of breath.  Panel 1a shows a mass compressing the right lung and 85 
displacing the trachea to the left.  Panel 1b shows the beneficial effects of monotherapy with an 86 
experimental agent.  After 18 days, tumor volume decreased, the trachea moved back towards the 87 
midline, and the patient reported symptomatic relief of dyspneia. 88 



 

 

 

(a) 

(b) 

Figure 1: A lung cancer patient’s CT scans before (a) and after (b) the administration of an 

experimental monotherapy (View 1). 

Figure 2 shows that some, but not all, tumors in the chest became larger and more metabolically active 89 

at the same time others moved towards remission.  In fact, this patient came off trial after only 6 weeks 90 

because a new metastasis caused a spinal cord compression despite the fact that the masses causing 91 

dyspneia continued to show a favorable response.  In this case, relying on clinical outcomes alone would 92 

have led to a conclusion that the drug is not active because the patient failed treatment after only 6 93 

weeks.  But, a more scientifically accurate conclusion might be that the drug holds promise for treating 94 

some tumor populations, but not others.   95 

http://midas.osa.org/midaspre/midas/bitstream/download/71510?key=JDEkR1ZHLm1lTnQkSUFPREFUWS9PdHJiY0VhV2hmZDkwLg==


 

 

 

Figure 2: PET (top) and CT (bottom) scans of the lung cancer patient shown in Figure 1 at baseline (left) and 18 
days after (right) the administration of therapy (View 2).  

If we imagine a future state where quantitative imaging provides regionally specific information about 96 
tumor responses in the whole patient that triggers the addition of treatment options to therapies that 97 
are providing selective benefits to some tumors but not others, then the imperative for qualifying 98 
quantitative imaging biomarkers becomes easier to visualize. 99 

Response Evaluation Criteria in Solid Tumors (RECIST) is a quantitative image analysis technique based 100 
on diameter measurements selected from axial slices.  It is designed to meet these needs, particularly 101 
when responses are robust.  However, problems with diameter measurements on axial slices include 102 
their lack of sensitivity.  The categorical response of Stable Disease is so broad that classifying a 103 
treatment as effective or futile can take a long time.  This is in part because thresholds for categorical 104 
responses correspond to changes in volume of about -66% for partial response to about 73% for 105 
progressive disease.  While changes in longest diameters have never been validated or qualified in the 106 
formal sense we are pursuing for volumetrics, RECIST has been used in a very broad number of cases 107 
and is generally recognized as effective for tumors that tend to have spherical geometries and contract 108 
or expand more or less uniformly.  Unfortunately, the more complex the tumor morphology and pattern 109 
of longitudinal change, the less sensitive the formalism becomes, to the point where it can be 110 
misleading in some cases.  111 

http://midas.osa.org/midaspre/midas/bitstream/download/71511?key=JDEkSG90QkVYdnkkV1l5M3lHbGoya2FLQ2VtOWdZMGhELw==


 

 

Referring to figure 3, changes in the longest diameters of the target lesions suggested that this patient 112 
remained in a prolonged state of Stable Disease.  As a consequence, the subject added little analytical 113 
power needed to distinguish between the two arms of the trial.  In retrospect, volumetric image analysis 114 
suggests that this patient had an initial response to treatment, but could have come off trial and 115 
switched to a new treatment several months before changes in unidimensional line-lengths met criteria 116 
for Progressive Disease.   117 
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Figure 3 119 

All of the stakeholders lose when benefits are not recognized, or there is a delay in diagnosing 120 
Progressive Disease. 121 

Methods 122 

It is widely recognized that significant advances in imaging technology have led to an increasingly 123 
important role for imaging in diagnosis, staging, guiding systemic, local, or interventional therapies, and 124 
monitoring responses to treatment.  However, development of imaging technologies is expensive, and 125 
early phase justification of effectiveness, before commercial viability is established, can be difficult.  126 
There is an emerging consensus that a cooperative atmosphere must be developed among the 127 
biopharmaceutical industry, the imaging device manufacturers, government funding agencies, and 128 
regulatory authorities, as well as scientists in a wide range of fields,  to cost effectively select and qualify 129 
mature quantitative imaging methods as biomarkers for the measurement of response to therapy.  130 

The development of public resources and open source tools for imaging as a biomarker using X-ray CT 131 
was re-invigorated by the NCI, NIBIB, FDA and National Institute of Standards and Technology (NIST) in 132 
2005, which included collaboration with the Radiological Society of North America (RSNA).4,5,6,7,12  This 133 
earlier work prompted the organization of an inter-federal agency workshop held at NIST in September 134 
2006, which addressed physical standards for imaging as a biomarker.2  Stakeholders from academia, 135 
industry, and scientific imaging societies including RSNA, American Association of Physicists in Medicine 136 
(AAPM), Society of Nuclear Medicine (SNM), and International Society for Magnetic Resonance in 137 

http://www.google.com/url?sa=U&start=1&q=http://www.ismrm.org/&usg=AFQjCNH8Sv-NTrGcQQ-w9qAmulC509bCzA


 

 

Medicine (ISMRM) proposed a model similar to the “Integrating the Healthcare Enterprise” (IHE) 138 
paradigm to engage industry stakeholders in this research area.  139 

At its annual meeting in 2007, RSNA created the Quantitative Imaging Biomarker Alliance (QIBA) to 140 
investigate the role of quantitative imaging methods in CT, MRI and PET as potential biomarkers in 141 
evaluating disease and responses to treatment.  The alliance has formed technical committees of 142 
representatives from the instrumentation manufacturers, software developers, imaging professionals in 143 
the pharmaceutical industry, radiologists from the imaging contract research organizations (CROs), 144 
officers in regulatory agencies, governmental research organizations, imaging scientists, and 145 
professional imaging society representatives.  One of the technical committees is referred to as the 146 
“Quantitative CT Technical Committee.” 147 

The Quantitative CT Technical Committee is engaged to produce alternative methods of response 148 
assessment, based on volumetric image acquisition and analysis, which will be accepted through 149 
appropriate regulatory pathways as predictors of clinical benefits, such as overall survival (OS).  The first 150 
specific aim compares time-dependent outcome measures based on uni-dimensional longest diameters 151 
to analogous endpoints based on 3D volumetric image analyses.  The expectation is that these 152 
alternative methods would be adopted if they require fewer enrollees in clinical trials, shorten time on 153 
trial for each subject who will ultimately fail to benefit from treatment, decrease the length of time 154 
required to conduct trials, and/or provide better correlations with actual clinical outcomes. 155 

The Committee was formed to include practicing clinicians, professional society leaders, regulatory 156 
officers, pharmaceutical industry representatives, imaging scientists, and imaging device industry 157 
representatives.  The principal value of the effort is to help converge the interests and effort of many 158 
stakeholders. 159 

Long-Term Goals are to establish processes and profiles that will eventually lead to the acceptance by 160 
the imaging community, clinical trial industry, and regulatory agencies, of 3D volumetric CT as proof of 161 
biology, proof of changes in pathophysiology, and surrogate end-points for changes in the health status 162 
of patients.  163 

Specific Aims are to develop the capability to meet targeted levels of accuracy and reproducibility for 164 
the quantification of anatomical structures, such as neoplastic masses.  This in turn requires identifying 165 
and creating coping strategies for all significant sources of variability in these measurements.  166 

Context is that this work is being conducted under the aegis of the RSNA's QIBA in collaboration with 167 
FDA’s Division of Applied Math/ Office of Science and Engineering Laboratories (OSEL)/ Center for 168 
Devices and Radiological Health (CDRH), NCI, NIST, American College of Radiology Imaging Network 169 
(ACRIN), major imaging equipment manufacturers (Philips, GE, Siemens, Toshiba, etc.), the Extended 170 
Pharmaceutical Research and Manufacturers of America (PhRMA) Imaging Group, and others.  171 

Constraint is that this work depends on the collaboration of, and must demonstrate benefit to, the 172 
imaging industry, the pharma industry, the academic research community, individuals with cancer, and 173 
the clinical community.  The benefits must be robust to justify the increased time and effort required 174 
when compared to qualitative impressions, as well as satisfy the requirements of the regulatory 175 
agencies.  Our approach is to converge scientific analysis in a way that encourages vendor participation 176 
while meeting current biopharmaceutical industry needs. 177 

Our ultimate goal is the use of these biomarkers on typical imaging systems in the practice of medicine.   178 



 

 

Results to Date 179 

The QIBA initiative has explored a number of issues and opportunities to improve research and 180 
development of volumetric CT therapy assessment methods. To accomplish this, it has been essential to 181 
obtain and analyze a wide range of image data collections that span clinical concepts and challenges, 182 
fundamentals of image acquisition, and opportunities to better perform the evaluation of algorithm 183 
performance. The sections that follow describe these data collections and the important insights each 184 
collection provides to the research community. 185 

Understanding Performance on Phantoms 186 

One approach to efficiently develop and evaluate the applicability of a quantitative imaging biomarker is 187 
to investigate the biomarker’s performance with phantom data.  Phantom image data can come in many 188 
forms including imaging simple lesion-like objects on flat backgrounds or imaging anthropomorphic 189 
phantoms containing realistic structure, complex synthetic lesions, and realistic physiology.  Figure 4 190 
shows three different examples of lung and chest phantoms from the literature, including a tissue 191 
equivalent tissue equivalent thorax section phantom (Fig. 4a), an anthropomorphic chest phantom 192 
(Figure 4b, and a mechanical breathing phantom (Figure 4c).8,9,10 193 

 

 

  

(a) (b) (c) 

 Figure 4: (a) tissue equivalent thorax section phantom (center) containing 9.5 mm diameter simulated 
spherical lung nodules, with two water-equivalent bolus sections (top and bottom), (b) the exterior shell of 
an anthropomorphic thoracic phantom and its vasculature insert; and (c) a mechanical lung phantom used 
to simulate breathing.  Images in (a)-(c) are reprinted with permission from Refs. 8-10, respectively. 

Although phantoms are different from real patients in many ways, phantom studies allow for a 194 
systematic analysis of biomarker performance against a known reference standard and under a range of 195 



 

 

imaging conditions.  This type of systematic analysis would be virtually impossible to conduct using 196 
patient scans because of dose concerns, variability in patients, motion artifacts, and lack of a definitive 197 
truth standard.11  While phantom studies are unlikely to serve as a complete replacement for evaluating 198 
a new biomarker on patient data, they may serve at least three important functions.  One is to quickly 199 
triage potential imaging biomarkers, so that time is not wasted evaluating biomarkers that have little 200 
potential for providing reliable quantitative measurements.  New biomarkers that don’t perform well 201 
with idealized phantom data are unlikely to perform well in patients whose diseases are well modeled 202 
by the phantom.  For those imaging biomarkers that do show promise, a second function of phantom 203 
data could be to systematically probe how biomarker performance is impacted by variations in imaging 204 
hardware and image acquisition protocols.  Again, this type of systematic evaluation of a biomarker is 205 
virtually impossible to conduct with patient data, even within a clinical trial, because of the large 206 
variability in manifestations of disease both within and among patients.  Finally, a third contribution of 207 
phantom studies could be in the design of clinical trials incorporating an imaging biomarker.  By first 208 
understanding how variations in image acquisition affect the reliability of the quantitative measurement 209 
through phantom studies12, it becomes possible to develop appropriate imaging standards as well as 210 
determining a minimum number of patients required to overcome the variability implicit when 211 
implementing the imaging biomarker.  Additional patients, above this minimum level, would be 212 
necessary to overcome patient variability as well as other sources of error in any particular trial. 213 

A companion manuscript in this issue by Gavrielides et al. describes CT image data for an 214 
anthropomorphic thorax phantom containing synthetic lung nodules.9  These data were collected by the 215 
U.S. Food and Drug Administration (FDA) to evaluate various lesions size measurement algorithms, and 216 
to develop a more complete understanding of how algorithm performance changes with variations in CT 217 
acquisition protocols and imaging hardware.  Figure 4(b) shows the thorax phantom and vasculature 218 
lung inserts to which synthetic nodules were attached and then imaged within the dataset.  The 219 
phantom was scanned with a Philips 16-row scanner (Mx8000 IDT, Philips Healthcare, Andover, MA) and 220 
a Siemens 64-row scanner (Somatom 64, Siemens Medical Solutions USA, Inc., Malvern, PA).  The data 221 
were collected using a factorial design so that a large number of combinations of exposure, pitch, slice 222 
collimation, reconstruction kernels and slice thickness were collected for both simple spherical nodules 223 
ad well as more complex ovoid, lobulated and spiculated synthetic nodules.  Figure 5 shows a complete 224 
CT scan of the phantom with seven spherical nodules of various sizes and densities attached to the 225 
vasculature insert.   226 



 

 

 

Figure 5: CT scan from acquisition 9111 of the FDA phantom dataset.  The thorax phantom contained six 
spherical nodules (20 mm diameter with -630 HU density; 5 mm. 8 mm, 10 mm, 20 mm and 40 mm 
diameter with  -10 HU density; 10 mm and 20 mm with +100 HU density).  The scan was acquired on a 
Philips Mx8000 IDT scan at 120 KVp and 200 mAs using a 16x0.75 collimation. 1.5 mm reconstruction 
thickness, 0.75 reconstruction increment, pitch of 1.2 and a medium reconstruction kernel (View 3). 

 227 

The FDA thorax phantom CT data described in Ref. 9 can be used as a resource for the development and 228 
assessment of lung nodule sizing algorithms.  Both the bias and variance associated with a nodule sizing 229 
method can be obtained because the reference standard for nodule size as well as repeat exposures are 230 
included as part of the dataset.  This makes the data ideal for comparing various size estimation 231 
algorithms.  The data are also useful for developing new size estimation methods13 as well as developing 232 
appropriate assessment methodologies for comparing algorithms.  These as well as various other 233 
applications of the phantom data are discussed in more detail in Ref. 9. 234 

Evaluation of imaging biomarkers with phantom data is one important component in the qualification of 235 
these biomarkers in both drug trials and clinical practice.  Clearly, phantom data have limitations 236 
because they do not match the diversity or complexity of real patients.  This strongly suggests that 237 
testing on patient data will be necessary at some point in the development process, but also that 238 
phantom data can be a very effective tool in both streamlining the development process and maximizing 239 
the utility of patient image data. 240 

Clinical Data Resources 241 

file://otso/Documents%20and%20Settings/bz2166/Local%20Settings/Temporary%20Internet%20Files/Content.Outlook/9B7EJVXN/phantomscan_4467.wmv
http://midas.osa.org/midaspre/midas/bitstream/download/71512?key=JDEkWTJ5VGV3WGkkMUtsWXNIR3dCeHRPYXVxNnJDUFI2Lg==


 

 

There have been considerable efforts to create publicly available sets of image data to assist in some of 242 
the efforts related to quantitative imaging of disease.  These datasets represent an important aspect in 243 
establishing quantitative imaging methods as they serve as reference datasets against which 244 
investigators and researchers may be able to benchmark and compare their measurement algorithms.  245 
Several datasets are now available, primarily through the NCI-funded Reference Image Database to 246 
Evaluate Response to Therapy (RIDER).6,14,15 247 

Same-day repeat CT study in NSCLC patients 248 

The first dataset to describe is the No-Change dataset provided by Memorial Sloan Kettering Cancer 249 
center.16  In this study, 32 patients with Non-Small Cell Lung Cancer (NSCLC) were consented and 250 
scanned twice within 15 minutes on the same scanner with the same imaging acquisition protocol.  The 251 
scanners were either LightSpeed 16 or VCT 64 (GE Healthcare, Milwaukee, WI). Images of each scan 252 
were reconstructed at 1.25mm slice interval without overlap. This unique experiment represents repeat 253 
scans under a presumed “no change” condition.  Tumor differences measured between the two scans 254 
can be considered as measurement variation/error that is possibly caused by intrinsic variance in the CT 255 
scanning device, errors in the image processing system, differences in patient positioning, patient 256 
inspiration level, etc.  Because this dataset does contain the same lesions acquired on two repeat CT 257 
scans under identical parameter settings in a short time period, it can be used to investigate minimum 258 
detectable changes on the state-of-the-art CT scanners by using advanced measurement tools, the 259 
information needed to define tumor response and progression. These datasets have been made publicly 260 
available through the NBIA web archive (http://ncia.nci.nih.gov/).   261 



 

 

262 
Figure 6:  An example taken from the same-day repeat CT study. Computer-aided tumor measurements 263 

were different on the two repeat CT scans even if there were no biological change of the tumor (View 4).  264 

CT lung studies at different time intervals  265 

In another RIDER project related study, serial CT scan images of patients with known tumors in the lungs 266 
(both primary and metastatic lesions) were submitted to NBIA under the RIDER collection.  Each case 267 
had at least 2 image data sets from different time points; many had 3 or more time points.  These cases 268 
were collected from UT-MD Anderson Cancer Center and Memorial Sloan-Kettering Cancer Center, as 269 
part of their clinical operation. There was no specific attempt to tightly control the imaging parameters 270 
between studies for these patients. 271 

http://midas.osa.org/midaspre/midas/bitstream/download/71513?key=JDEkak5pMzlNODIkSlNkOW94WkNETWNUSUZIaGdueHpwMQ==


 

 

 272 

Figure 7: Longitudinal Scans where Patient has Known Tumor (View 5). 273 

Another public resource for clinical CT image data is the Public Lung Database to Address Drug 274 
Response17. This dataset contains a number of different exemplar CT image sets including cases with at 275 
least two scans having manual volumetric boundary markings and cases with at least two scans recorded 276 
in the same session (zero-change) as part of a biopsy procedure that are documented with a semi-277 
automated lesion measuring algorithm. These cases were collected from the Weill Cornell Medical 278 
College as part of their clinical operation. 279 

 While these reference datasets cannot be used to quantify the accuracy of measurement, they are a 280 
tremendous resource for researchers who need to characterize the precision of new quantitative 281 
imaging methods. They can be used to investigate the minimum detectable change (using the cases with 282 
no change) as well as different sources of variance (both sets). 283 

Algorithm Evaluation Systems 284 

We expect that computer assisted methods for measurement will aid the physician with respect to 285 
accuracy and precision of lesion measurements. One principal goal in evaluating such methods is to 286 
support the improvement of algorithms by providing developers a resource for identifying the strengths 287 
and weaknesses of their methods. Similar evaluations have been applied to computer vision methods 288 
for biometric-based identification, such as face and gait recognition. 289 

For the clinical use of the volumetric image biomarker the most relevant measurement is the relative 290 
change in lesion size over some time interval. As has been stated before, it is critical to know when a 291 
measured change in size is statistically significantly greater than the measurement error (i.e., represents 292 
an actual change in the lesion); secondly we would like to know the precision of the size change 293 

http://midas.osa.org/midaspre/midas/bitstream/download/71514?key=JDEkOUtVblJnRU8kc1dUek9hU3dPZ0RVODJ5VE9JanFuLg==


 

 

measurement. To explore these issues in the context of computer algorithms and real lesions rather 294 
than phantoms, studies have been conducted on selected data sets of pairs of lesions to evaluate how 295 
different computer algorithms compare on a standardized dataset. 296 

A first evaluation of this type was Biochange’08, which invited participants to measure the change in 297 
pulmonary lesions using CT data from both the RIDER database of patients with known lung tumors and 298 
CT imaging of the FDA’s anthropomorphic phantom described earlier.18  This pilot study provided 299 
algorithm and software developers with 13 cases, each having scans at 2 time points. Seven cases were 300 
clinical, all with 5.0 mm slice thickness and acquired at intervals of weeks to months. There were six 301 
phantom nodules from studies of the FDA phantom, having slice thicknesses of 3.0 mm and 0.8 mm. 302 

The clinical data was chosen from 23 cases in RIDER for which diameter measurements on axial slices 303 
(one-dimensional) markup by 2 radiologists was available. In the analysis the markup was used as a 304 
reference and also examined the statistical differences between the algorithms/software. 305 

The study was designed as a pilot, a proof of concept for the evaluation process. There were 3 306 
participants who provided 4 submissions. Three of the submissions involved a software-assisted user in 307 
the loop. The study required the participant to submit a measure of change for each case. While this 308 
permitted the use of any change metric, for example one based on one- or two-dimensional 309 
measurement, each participant submitted the fractional change in volume and also provided volume 310 
measurements at both time points. The limited size of the study did not support statistically significant 311 
findings about the algorithms but did suggest some tentative conclusions regarding the comparison of 312 
diameter measurements on axial slices markup and computer assisted change measurement. The 313 
phantom data provided insight into the effects of slice thickness on the measurement of volume change. 314 

The data suggests that the algorithms achieve agreement comparable to that between the radiologists 315 
and the two reach similar categorical conclusions. In particular, there were 6 cases for which the two 316 
radiologists agreed on the diameter measurements on axial slices categorical assessment 317 
(response/stable disease/disease progression) while, in one case, the radiologists disagreed. Using 318 
categorical (3-dimensional) thresholds derived from the diameter measurements on axial slices criteria, 319 
the 4 submissions obtained results similar to those of the radiologists: agreeing with each other and 320 
with the radiologists in 5 of the 6 cases. The two cases of disagreement occurred on lesions involved, in 321 
one case, with the mediastinum and in the other, with the lung wall at the apex.  Figure 8 shows CT 322 
slices of the involved lesion near the lung apex on which the computed results disagreed. In this case the 323 
radiologists’ markup agreed in finding stable disease. 324 



 

 

 325 

Figure 8: An involved apical lesion at two time points, 7 months apart. In this RIDER case, used in 326 
Biochange'08, four computer-assisted measurements did not agree on a categorical assessment of volume 327 

change akin to diameter measurements on axial slices. In mark up by two radiologists, the diameter 328 
measurements on axial slices criteria indicate stable disease. The four computer-assisted results agreed on 329 

categorical volume change for six other clinical cases (View 6). 330 

The phantom nodules were scanned in both thin- and thick-slice series (0.8 and 3.0 mm). For the 331 
phantoms, there was no change. There was a striking difference between the thin and thick slice results. 332 
For thin slice, the absolute range of reported change measurements was less than 10%. For the thick 333 
slice data, the range was about 40%. 334 

A follow-on study to the Biochange '08 pilot is the planned full scale Biochange Challenge. It also uses 335 
the RIDER lung CT studies but mainly has thin slice studies, including the MSKCC Coffee Break data 336 
discussed earlier. In addition to the participation of algorithm/software developers, the planned study 337 
seeks the participation of radiologists to provide markup for comparison with the computed change 338 
measures. 339 

A second study group members have conducted is the “VOLCANO’09 Challenge.”19  This challenge 340 
invited participants to evaluate the change in size of pulmonary nodules.  The challenge involved 341 
measuring the change in nodule size for 50 scan pairs. Four additional scan pairs were made available 342 
for training. The data was selected from cases prepared for the Public Lung Database to Address Drug 343 

http://midas.osa.org/midaspre/midas/bitstream/download/71515?key=JDEkaGN4SG0zYW4kTHBXbkFvUms5Sm1QbDBndVk1LngwLw==


 

 

Response.20,21 This database was sponsored by the Prevent Cancer  Foundation22 and provides 344 
information on a number of aspects of lesion measuring  by means of sample image; this resource is 345 
complimentary to the RIDER database.  A key component of this database are repeat scans made at the 346 
same time. This zero change dataset is similar to the No-Change dataset except that scans were 347 
obtained from the start of CT guided biopsy procedure before the needle affects the image quality. 348 

Teams reported the fractional change in nodule size for each of the 50 scan pairs. Thirteen different 349 
teams submitted their measurement change results from a total of 17 different methods. In 11 of these 350 
cases, the actual volumes recorded for each nodule were also reported. The participants were only 351 
informed that there were 50 nodule pairs; however, the data may be divided into four subgroups: 352 

A. (14) zero-change in which the scans were taken minutes apart and therefore there is no real 353 
change in the nodule size. 354 

B. (13) zero-change cases as in A above except that one scan has a slice thickness of 1.25 mm and 355 
the second scan has a larger slice thickness (2.5 or 5.0 mm) 356 

C. (19) nodules with a significant time interval between scans and therefore some real change and 357 
(3)  nodules with a large amount of size change (greater than 1.5 times in volume). Of these 358 
nodules 19 were considered to be stable or benign by biopsy and 3 were diagnosed as 359 
malignant.  360 

D. (1) synthetic phantom nodule with a known size recorded with a different slice thickness+  361 

If we only used zero-change data then any system that had a constant output set to zero would be 362 
considered to have an ideal response. For this reason we included cases for which a real change was 363 
indicated by observation; however, for these cases there is no way to know precisely how much that 364 
change is.  Most evaluation methods for CAD systems, including challenges, involve a ground truth 365 
established be experts. However, for the task of nodule size estimation it is well known that there is a 366 
large amount of variation or disagreement in expert size estimations.23  Further, it has not been 367 
established that expert’s manual estimations are superior to automated measurements. In this 368 
challenge, while the change in size of nodules was reviewed by experts, the issue of ground truth was 369 
explored through the submitted responses to the challenge. 370 

 371 

Figure 9. Two scans of a lesion in the VOLCANO Dataset (View 7). 372 

http://midas.osa.org/midaspre/midas/bitstream/download/71516?key=JDEkWGFvOTRJcTMkVEtoYUE3UEVCRTdISEIxeFowNTBSLg==


 

 

 373 

Figure 10: An example of computer assisted segmentation for the lesions shown in Figure 9 374 

The initial findings of this study showed there was no statistical difference between the automated  375 
methods on scans of the same slice thickness,  but  there was a statistical difference in the methods 376 
when the scan slice thickness is changed (for subgroup B above).  The behavior of the methods for 377 
nodules with a small real change in size was similar to that for the zero-change data. The last point has 378 
implications for the validity of using zero-size change datasets for evaluating nodule measurement 379 
performance. There was an interesting concordance between the different automated methods for a 380 
measured change in size for some cases in the zero-change dataset.   A follow on to this study is 381 
VOLCAMAN’10,24 which enlists a number of physicians using simple manual image marking tools to 382 
measure the change in size of the a subset of the cases used in VOLCANO’09. In this way the variation of 383 
experts for the same task will be established and comparisons with computer methods can be made 384 

Discussion 385 

These examples are only a small portion of what could be done to advance the field.  Whether 386 
considered from the vantage point of providing an objective basis on which to evaluate the relative 387 
performance of different candidate methods, or to allow individual groups access to larger data sets 388 
than they would otherwise be able to afford individually, or as a primary driver in the effort to harness 389 
the strength of current and new technology towards clinically relevant problems, there is a recurrent 390 
theme of the importance of public data resources.  Moreover, the ability to evaluate the same data in 391 
different ways is arguably not only helpful, but in fact necessary, to establish an objective basis for 392 
performance assessment.   393 

This paper identifies several early programs to collect and utilize data either directly in the public 394 
domain or easily accessible to teams that demonstrate their need for it to consortia or other groups that 395 
recognize a role in collecting and curating such data.  Likewise, it is published using the nascent method 396 
referred to by this journal as “interactive science publishing,” which further encourages a means by 397 
which not only the results but also the data used in deriving those results is available for public peer 398 
review.  We support the editors position that such capabilities will not only move the state of the art in 399 
scientific publication forward, but the science itself will benefit as more access is granted to 400 
independent reviewers.  Such capability is concordant with the goals of our group and we are pleased to 401 
be able to exercise it for our present purposes. 402 



 

 

Other working material of the team is maintained on a Wiki page that enables the group activity.25 403 
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